

X1 Series Manuel d'utilisation2.5kW - 6.0kW

Solax Power Network Technology (Zhejiang) Co., Ltd.

No.288 Shizhu Road, Tonglu Economic Development Zone, Tonglu City, Zhejiang province, China. Tel: +86 0571-56260011 E-mail: info@solaxpower.com

Copyright Declaration

The copyright of this manual belongs to Solax Power Network Technology (Zhejiang) Co., Ltd. Any corporation or individual should not plagiarize, partially or fully copy (including software, etc.), and no replication or distribution of it in any form or by any means. All rights reserved. SolaX Power Network Technology (Zhejiang) Co., Ltd. reserves the right of final interpretation.

CHANGE HISTORY

Changes between document versions are cumulative. The latest version contains all updates made in previous versions.

Version 01 (Jan. 03, 2023)

Updated 4. Technical Data (Added technical data).

Version 00 (Sept. 27, 2022)

Initial release

Sommaire

1 Note sur le présent manuel	03
1.1 Champ de validité	03
1.2 Groupe cible	03
1.3 Symboles utilisés	03
2 Sécurité	04
2.1 Utilisation appropriée	04
2.2 Instructions de sécurité importantes	06
2.3 Explication des symboles	10
2.4 Directives CE	11
3 Introduction	12
3.1 Caractéristiques de base	12
3.2 Bornes de l'onduleur	12
3.3 Dimensions	13
4 Technical Data	14
4.1 Entrée CC	14
4.2 Sortie CA	14
4.3 Efficience, sécurité et protection	15
4.4 Données du système	15
5 Installation	16
5.1 Vérifier l'absence de dommages dus au transport	16
5.2 Listes d'emballage	16
5.3 Précautions d'installation	17
5.4 Étapes de l'installation	18
5.5 Connexions de l'onduleur	22
5.6 Faire fonctionner le variateur	46
5.7 Alarme de défaut d'isolement	47
6 Méthode de fonctionnement	48
6.1 Panneau de contrôle	48
6.2 Structure de l'écran LCD.	49

6.3 Fonctionnement de l'écran LCD	50
7 Dépannage	76
7.1 Dépannage	76
7.2 Entretien courant	79

8 Mise hors service	80
8.1 Démontage de l'onduleur	80
8.2 Emballage	80
8.3 Stockage et transport	80
8.4 Mise au rebut de l'onduleur	80
9 Clause de non-responsabilité	81

* Formulaire d'enregistrement de la garantie

1 Notes sur le présent manuel

1.1 Champ de validité

Ce manuel fait partie intégrante de la série X1. Il décrit l'assemblage, l'installation, la mise en service, l'entretien et les pannes du produit. Veuillez le lire attentivement avant d'utiliser l'appareil.

X1-BOOST-2.5K-G4	X1-BOOST-3K-G4	X1-BOOST-3.3K-G4
X1-BOOST-3.6K-G4	X1-BOOST-4.2K-G4	X1-BOOST-5K-G4
X1-BOOST-6K-G4		

Note : "X1" : monophasé ; "BOOST" : Série BOOST ; "3K" : 3kW ; "G4" : la 4ème génération

Conservez ce manuel dans un endroit accessible en permanence.

1.2 Groupe cible

Ce manuel est destiné aux électriciens qualifiés. Les tâches décrites dans ce ne peuvent être effectuées que par des électriciens qualifiés.

1.3 Symboles utilisés

Les types suivants d'instructions de sécurité et d'informations générales apparaissant dans ce document sont indiqués ci-dessous :

DANGER !

Le terme "danger" indique une situation dangereuse qui, si elle n'est pas évitée, entraînera la mort ou des blessures graves.

AVERTISSEMENT !

Le terme "avertissement" indique une situation dangereuse qui, si elle n'est pas évitée, peut entraîner la mort ou des blessures graves.

ATTENTION !

La mention "Attention" indique une situation dangereuse qui, si elle n'est pas évitée, peut entraîner la mort ou des blessures graves.

REMARQUE !

La rubrique "Remarque" fournit des conseils utiles pour un fonctionnement optimal de votre produit.

2 Sécurité

2.1 Utilisation appropriée

Les onduleurs de la série X1 sont des onduleurs photovoltaïques capables de convertir le courant continu du générateur photovoltaïque en courant alternatif et de l'injecter dans le réseau public.

AVERTISSEMENT ! Une surtension potentielle peut endommager l'onduleur.

La foudre provoque des dégâts soit par un coup direct, soit par des dues à surtensions un coup proche. Les surtensions induites sont la cause la plus probable des dommages causés par la foudre dans la plupart des situations ou des installations, en particulier dans les zones rurales où l'électricité est généralement fournie par de longues lignes aériennes. Les surtensions peuvent être présentes à la fois sur la conduction du générateur photovoltaïque et les sur câbles CA menant au bâtiment. Il est nécessaire de consulter des spécialistes de la protection contre la foudre lors de l'utilisation finale. En utilisant une protection externe appropriée contre la foudre, l'effet d'un coup de foudre direct sur un bâtiment peut être atténué de manière contrôlée, et le courant de foudre peut être déchargé dans le sol.

Tous les câbles CC doivent être installés aussi courts que possible, et les câbles positifs et négatifs de la chaîne ou de l'alimentation CC principale doivent être regroupés. Évitez de créer des boucles dans le système. Cette exigence de courts trajets et de mise en faisceau inclut tous les conducteurs de mise à la terre associés.

Les dispositifs à étincelles ne conviennent pas pour être utilisés dans les circuits CC. Une fois conducteurs, ils ne cesseront pas de conduire jusqu'à ce que la tension passe à travers leurs bornes, généralement moins de 30 volts.

Ø Effect de lutte contre l'îlotage

L'effect d'îlotage est un phénomène particulier selon lequel le système photovoltaïque connecté au réseau continue d'alimenter le réseau voisin lorsque l'alimentation électrique n'est plus présente. Il est dangereux pour le personnel de maintenance et le public. La série X1 fournit une dérive de fréquence active (AFD) pour prévenir l'effect d'îlotage.

2.2 Instructions de sécurité importantes

DANGER !

Danger de mort dû à des tensions élevées dans l'onduleur ! - Tous les travaux doivent être effectués par un électricien qualifié. - L'appareil ne doit pas être utilisé par des enfants ou des personnes dont les capacités physiques, sensorielles ou mentales sont réduites, ou qui manquent d'expérience et de connaissances, à

moins qu'ils n'aient bénéficié d'une surveillance ou d'instructions.
Les enfants doivent être surveillés pour s'assurer qu'ils ne jouent pas avec l'appareil.

ATTENTION !

Risque de brûlure par les parties chaudes du boîtier ! • Pendant le fonctionnement, le couvercle supérieur de l'enceinte

- et le serre de lleresiste reuvent devenie superieu de rencem
- et le corps de l'enceinte peuvent devenir chauds.

ATTENTION !

Risque d'atteinte à la santé en raison des effets du rayonnement !

• Les femmes enceintes et les enfants ne doivent pas rester à proximité de l'onduleur.

REMARQUE !

Mise à la terre du générateur PV.
Se conformer aux exigences locales en matière de mise

à la terre des modules PV et du générateur PV. Nous recommandons de connecter le cadre du générateur et les autres surfaces conductrices d'électricité de manière à assurer une conduction continue et une mise à la terre afin d'assurer une protection optimale du système et des personnes.

ATTENTION !

[-3

S'assurer que la tension CC d'entrée est ≤Max. Tension continue maximale. Une surtension peut entraîner des dommages permanents à l'onduleur ou d'autres pertes qui ne sont pas couvertes par la garantie !

ATTENTION !

 Le personnel d'entretien autorisé doit débrancher l'alimentation CA et CC de la série X1 avant de procéder à l'entretien ou au nettoyage ou de travailler sur les circuits connectés à la série X1.

ATTENTION ! Risque d'électrocution !

- Avant de procéder à l'application, veuillez lire attentivement cette section afin de garantir une application correcte et sûre. Conservez soigneusement le manuel d'utilisation.

N'utilisez que des accessoires recommandés ou vendus par nous. Dans le cas contraire, il existe un risque de fire, de choc électrique ou de blessure.
Assurez-vous que le câblage existant est en bon état et que le fil n'est pas sous-

- Assurez-vous que le câblage existant est en bon état et que le fil n'est pas sousdimensionné.
- Ne démontez pas les pièces de l'onduleur qui ne sont pas mentionnées dans le guide d'installation. L'onduleur ne contient aucune pièce réparable par l'utilisateur. Voir la garantie pour les instructions relatives à l'obtention d'un service aprèsvente. Toute tentative d'entretien de l'onduleur de la série X1 par vous-même peut entraîner un risque d'électrocution ou de fire et annulera votre garantie. Tenez-le éloigné des matériaux inflammables et explosifs afin d'éviter tout risque de fire catastrophique. Le lieu d'installation doit être éloigné de toute substance humide ou corrosive. Le personnel d'entretien autorisé doit utiliser des outils isolés lors de l'installation ou de la manipulation de cet équipement.

- Les modules photovoltaïques doivent être de classe A selon la norme IEC 61730.
- Évitez de toucher le dispositif de connexion PV en cas de choc électrique.
- Après la déconnexion des alimentations MAINS et PV, le condensateur de l'unité contient encore une tension dangereuse pendant 5 minutes, ne le touchez pas pendant cette période.

ATTENTION !

Une tension dangereuse est présente jusqu'à 5 minutes après la déconnexion de l'alimentation électrique. la déconnexion de l'alimentation électrique.

- ATTENTION - Risque de choc électrique dû à l'énergie stockée dans le condensateur. Ne jamais faire fonctionner les coupleurs du convertisseur solaire, les câbles MAINS, les câbles PV ou le générateur PV lorsque le courant est appliqué. Après avoir coupé le PV et le secteur, attendez toujours 5 minutes pour laisser les condensateurs du circuit intermédiaire se décharger avant de débrancher les coupleurs DC et MAINS.

- Lorsque vous accédez au circuit interne du convertisseur solaire, il est très important d'attendre 5 minutes avant de faire fonctionner le circuit d'alimentation ou de démonter les condensateurs d'électrolyte à l'intérieur de l'appareil. N'ouvrez pas l'appareil au préalable car les condensateurs ont besoin de temps pour se décharger de manière adéquate !

- Mesurez la tension entre les bornes UDC+ et UDC- à l'aide d'un multimètre (impédance d'au moins 1 Mohm) pour vous assurer que l'appareil s'est totalement déchargé.
- L'onduleur intègre un dispositif de surveillance du courant résiduel (RCM) interne certifié afin d'assurer une protection contre les risques d'électrocution et de fire en cas de dysfonctionnement des câbles ou de l'onduleur. Il existe deux seuils de déclenchement pour le RCD, comme l'exige la certification (IEC 62109-2 : 2011). La valeur par défaut pour la protection contre l'électrocution est de 30 mA, et celle pour le courant ascendant lent est de 300 mA.
- Si un RCD externe est exigé par la réglementation locale, vérifiez quel type de RCD est exigé par le code électrique en vigueur. Il est recommandé d'utiliser un disjoncteur de type A. La valeur recommandée pour le RCD est de 300mA, à moins qu'une valeur inférieure ne soit exigée par le code électrique local.

Connexion PE et courant de fuite

ATTENTION!

Courant de fuite élevé !
La mise à la terre est indispensable avant de brancher l'alimentation

- Une mise à la terre incorrecte peut entraîner des blessures physiques, la mort ou un dysfonctionnement de l'équipement et augmenter les effets électromagnétiques.
- Veillez à ce que le conducteur de mise à la terre soit de taille adéquate, comme l'exigent les règles de sécurité.

Pour le Royaume-Uni

- L'installation qui relie l'équipement aux bornes d'alimentation doit être conforme aux exigences de la norme BS 7671.

- L'installation électrique du système PV doit être conforme aux exigences de la norme BS 7671 et de la norme IEC 60364-7-712.
- Aucun réglage de protection ne peut être modifié.

- L'installateur doit s'assurer que l'équipement est installé et exploité par ce moyen afin de satisfaire à tout moment aux exigences de l'ESQCR22(1)(a).

Pour l'Australie et la Nouvelle-Zélande

 L'installation électrique et l'entretien doivent être effectués par un électricien agréé et doivent être conformes aux règles nationales australiennes en matière de câblage.

2.3 Explanation of Symbols

This section gives an explanation of all the symbols shown on the inverter and on the type label.

Symbols on the Inverter

Symbol	Explanation
	The inverter is working normally, when the blue light is on.
!	An error has occurred, when the red light is on.

• Symbols on the Type Label

Symbol	Explanation
CE	CE mark. The inverter complies with the requirements of the applicable CE guidelines.
UK CA	Compliant with UKCA standards.
	RCM remark.
TOVERAL LIST TOVERAL LIST CONDUCTOR	TUV certification.
	Beware of hot surface. The inverter can become hot during operation. Avoid contact during operation.
A	Danger of high voltages. Danger to life due to high voltages in the inverter!
	Danger. Risk of electric shock!
	Observe enclosed documentation.
X	The inverter can not be disposed together with the household waste. Disposal information can be found in the enclosed documentation.
	Do not operate this inverter until it is isolated from mains and on-site PV generation suppliers.
	 Danger to life due to high voltage. There is residual voltage in the inverter which needs 5 min to discharge. Wait 5 min before you open the upper lid or the DC lid.

2.4 EC Directives

This section describes the requirements of the European low voltage regulations, including safety instructions and system licensing conditions, the user must comply with these regulations when

installing, operating, and maintaining the inverter, otherwise personal injury or death may occur, and the inverter will be damaged.

Please read the manual carefully when operating the inverter. If you do not understand "Danger", "Warning", "Caution" and the description in the manual, please contact the manufacturer or service agent before installing and operating the inverter.

Make sure that the whole system complies with the requirements of EC (2014/35/EU, 2014/30/EU, etc.) before starting the module (i.e. to start the operation).

Standard of 2014/35/EU (LVD) EN IEC 62109-1; EN IEC 62109-2 EN 62477-1 Standard of 2014/30/EU (EMC) EN IEC 61000-6-1; EN IEC 61000-6-2; EN IEC 61000-6-3; EN IEC 61000-6-4; EN IEC 61000-3-2; EN 61000-3-3; EN IEC 61000-3-11; EN 61000-3-12 EN 55011

The assembly shall be installed in accordance with the statutory wiring rules. Install and configure the system in accordance with safety rules, including the use of specified wiring methods. The installation of the system can only be done by professional assemblers who are familiar with safety requirements and EMC. The assembler shall ensure that the system complies with the relevant national laws. The individual subassembly of the system shall be interconnected by means of the wiring methods outlined in national/international such as the national electric code (NFPA) No. 70 or VDE regulation 4105.

3. Introduction

3.1 Caractéristiques de base

Merci d'avoir acheté notre onduleur. L'onduleur est doté d'une technologie avancée, d'une grande fiabilité et de fonctions de contrôle pratiques.

- Technologie de contrôle DSP avancée
- Utilise les derniers composants de puissance à haut rendement
- Technologie MPPT optimale
- Deux suivis MPP indépendants
- Large plage de puissance MPPT
- Solutions avancées d'anti-îlotage
- Niveau de protection IP66
- Rendement maximal jusqu'à 98%. Rendement européen jusqu'à 97%.
- THD<2%

3.2 Bornes de l'onduleur

Object	Description
А	Interrupteur CC (en option)
В	Connecteur DC
С	DONGLE
D	Vis de terre
E	RS485/ Meter/ CT/ DRM(optional)
F	Connecteur AC

Note : Wi-Fi/ LAN/ 4G DONGLE partage un port C ; RS485/ Meter/ DRM partagent un port E.

L'équipement de l'Interrupteur CC avec une serrure dépend des exigences locales. L'interrupteur CC peut varier légèrement car il existe deux versions : Version Australie (comme indiqué ci-dessus) et la version générale.

ATTENTION ! Seul le personnel autorisé est habilité à se connecter.

3.3 Dimension

> Dimension

4. Données techniques 4.1 Entrée DC

Modèle	X1- BOOST- 2.5K-G4	X1- BOOST- 3K-G4	X1- BOOST- 3.3K-G4	X1- BOOST- 3.6K-G4	X1- BOOST- 4.2K-G4	X1- BOOST- 5K-G4	X1- BOOST- 6K-G4
Puissance d'entrée max. réseau PV [Wc]	6000	6000	6600	7200	8000	10000	12000
Tension max PV [d.c.V]	600	600	600	600	600	600	600
Tension de démarrage [d.c.V]	50	50	50	50	50	50	50
Tension d'entrée nominale [d.c.V]	360	360	360	360	360	360	360
Plage de tension MPPT [d.c.V]	40-560	40-560	40-560	40-560	40-560	40-560	40-560
Nbre de trackers MPP / strings par tracker MPP				2/1			
Courant PV max.(entrée A/entrée B) [d.c.A	j –			16/16			
ISC Courant de court-circuit du générateur PV (entrée A/entrée B) [d.c.A]				22/22			
Courant de retour maximal de l'onduleur vers le réseau [d.c.A]				0			

4.2 Sortie AC

Modèle	X1- BOOST- 2.5K-G4	X1- BOOST- 3K-G4	X1- BOOST- 3.3K-G4	X1- BOOST- 3.6K-G4	X1- BOOST- 4.2K-G4	X1- BOOST- 5K-G4	X1- BOOST- 6K-G4
Puissance apparente de sortie nominale [VA	A] 2500	3000	3300	3680	4200	5000 ³	6000
Courant de sortie nominal [a.c.A]	10.9	13.1	14.4	16	18.3	21.74	26.1
Puissance apparente de sortie maximale [VA]	2750	3300	3630	4048 ¹	4620	5000 ⁵	6000
Courant continu de sortie max. [a.c.A]	12	14.4	15.8	17.6 ²	20.1	21.7 ⁶	27.3
Tension du réseau [V]/Plage du réseau	u 220/230/240; 90-290						
Fréquence nom.du réseau/plage de fré. du réseau [H:	u[Hz] 50/60; ±5						
Gamme de facteurs de puissance			0,8	en tête-0,8	à la traîne		
THDi (puissance nominale) [%]				<3			
Tension nominale AC [a.c.V]			:	220/230/24	0		
Current (inrush) [a.c. A]	13.5						
Courant de défaut maximal de sortie [a.c.A]	59 (3 ms)						
Protection maximale contre les surintensités de sortie [a.c.A]				50			

Note:

 1. 4048 (3680 For G98, TOR and PPDS)
 2. 17.6 (16 For G98, TOR and PPDS)

 3. 5000 (4600 for VDE4105);
 4. 21.7 (20 for VDE4105).

 5. 5000 (4600 for VDE4105);
 6. 21.7 (20 for VDE4105).

4.3 Protection

Modèle	X1- BOOST- 2.5K-G4	X1- BOOST- 3K-G4	X1- BOOST- 3.3K-G4	X1- BOOST- 3.6K-G4	X1- BOOST- 4.2K-G4	X1- BOOST- 5K-G4	X1- BOOST- 6K-G4		
Sécurité et protection									
Protection contre les surtensions et les sous-tensions		OUI							
Protection contre l'isolement du CC		OUI							
Surveillance de la protection contre les défauts à la terre		OUI							
Protection du réseau	OUI								
Surveillance de l'injection de cc	OUI								
Contrôle du courant de retour	OUI								
Détection du courant résiduel		OUI							
Protection contre l'îlotage				OUI					
Protection contre la surchauffe				OUI					
SPD (DC/AC)				11/11					
AFCI (Arc-Fault Circuit-Interrupter)		En option							
Standard									
Sécurité	EN/IEC62109-1/2								
EMC	EN61000-6-1/2/3/4; EN61000-3-2/3/11/12;EN55011								
Surveillance du réseau	IEC61727, EN50549, G98/G99, AS 4777.2, VDE4105, CEI 0-21, VFR, PPDS, TOR								

4.4 Données du système

Modèle	X1- BOOST- 2.5K-G4	X1- BOOST- 3K-G4	X1- BOOST- 3.3K-G4	X1- BOOST- 3.6K-G4	X1- BOOST- 4.2K-G4	X1- BOOST- 5K-G4	X1- BOOST- 6K-G4		
Données du système									
Efficience maximale [%]	98	98	98	98	98	98	98		
Euro. efficience [%]	97	97	97	97	97	97	97		
Consommation en veille [W] @Nuit		3							
Protection contre les agressions				IP66					
Plage de température ambiante de fonctionnement [°C]	-25~60								
Altitude max; de fonctionnement [m	4000								
Humidité [%]		0~100							
Émissions sonores typiques [dB]				25 ¹					
Température de stockage [°C]				-30~70					
Dimensions(W×H×D) [mm]			4	04x274x14	6				
Poids [kg]	11.5	11.5	11.5	11.5	11.5	11.5	11.5		
Concept de refroidissement			N	ature coolir	Ig				
Interfaces de communication	RS485/DRM/USB/Pompe à chaleur, en option : CT/Mètre ;								
Dongle de surveillance en option	Pocket WiFi/LAN/4G								
Classe de protection				I					

Note :

Pour les modèles équipés d'un ventilateur interne (en option), l'émission de bruit typique est de 30 dB.

Modèle	X1- BOOST- 2.5K-G4	X1- BOOST- 3K-G4	X1- BOOST- 3.3K-G4	X1- BOOST- 3.6K-G4	X1- BOOST- 4.2K-G4	X1- BOOST- 5K-G4	X1- BOOST- 6K-G4	
Données du système								
Catégorie de surtension	III (MAINS), II (DC)							
Topologie de l'onduleur	Non isolée							
Méthode active d'anti-îlotage	Décalage de fréquence							

5. Installation

5.1 Vérifier que le transport n'a pas été endommagé

Assurez-vous que l'onduleur est intact pendant le transport. En cas de dommages visibles, tels que des fissures, contactez immédiatement votre revendeur.

5.2 Listes d'emballage

Ouvrez l'emballage et sortez le produit, vérifiez d'abord les accessoires. La liste d'emballage est présentée ci-dessous.

Bracket × 1

DC pin contact (2 × positive, 2 × negative)

RJ45 terminal × 1

Female DC unit × 2;

Male DC unit × 2

REMARQUE ! Pour les accessoires optionnels, veuillez tenir compte de la livraison effective

5.3 Précautions d'installation

Les onduleurs de la série X1 sont conçus pour être installés à l'extérieur (IP 66).

Àssuréz-vous que le site d'installation répond aux conditions suivantes :

- Éviter l'exposition à l'éblouissement.

- Éviter de placer l'appareil dans des zones où des matériaux hautement inflammables sont stockés.

- Évitez de placer l'appareil dans des zones potentiellement explosives.

- Évitez de placer l'appareil à proximité d'une antenne de télévision ou d'un câble d'antenne.

- Évitez de placer l'appareil à une altitude supérieure à 4000 m au-dessus du niveau de la mer

- Assurez-vous que la ventilation est suffisante.

- La température ambiante et l'humidité relative doivent répondre respectivement aux exigences suivantes : +60°C~25°C : 0~100%.

- La pente du mur doit être comprise entre ±5°.

Le mur sur lequel est accroché l'onduleur doit répondre aux conditions suivantes :

- Brique/béton solide ou surface de montage de résistance équivalente :

- L'onduleur doit être soutenu ou renforcé si la résistance du mur n'est pas

suffisante (mur en bois, mur recouvert d'une épaisse couche de décoration, etc.)

Évitez la lumière directe du soleil, l'exposition à la pluie, la neige pendant l'installation et l'utilisation de l'appareil.

L'onduleur peut être installé à l'intérieur d'un boîtier, en veillant à ce qu'il réponde aux exigences ci-dessus, à l'espace requis et à une ventilation suffisante.

Taille de l'espace disponible

Tableau Taille de l'espace disponible

Position	Taille min.
Gauche	300 mm
Droite	300 mm
Haut	300 mm
Bas	300 mm
Frontale	300 mm

R

REMARQUE !

Évitez d'installer l'appareil dans l'espace confiné.

5.4 Étapes de l'installation

Préparation

Les outils ci-dessous sont nécessaires avant l'installation.

> Étape 1 : Visser le support mural au mur

a) Utilisez le support mural comme modèle pour marquer la position des 3 trous sur le mur à l'aide d'un marqueur, et ajustez-la à l'aide du niveau à bulle.

Installation

b) Percez des trous à l'aide d'une perceuse (mèche : 10 mm), en veillant à ce que les trous soient suffisamment profonds (au moins 60 mm) pour l'installation.

c) Insérer les tubes d'expansion dans les trous, placer le support mural et utiliser des vis autotaraudeuses pour serrer le support.

≻Étape 2 : Adapter l'onduleur au support mural

d) Accrochez l'onduleur au support, rapprochez-le, posez-le légèrement et assurez-vous que les deux barres de montage à l'arrière sont bien fixées aux deux rainures du support.

Étape 3 : Fixer l'onduleur avec le support mural
e) Fixer le trou droit de l'onduleur à l'aide de la vis à tête hexagonale M5*L12.

5.5 Connexions de l'onduleur

5.5.1 Principales étapes de la connexion à l'onduleur

➢ Connexion à la chaîne PV

L'onduleur dispose de deux connecteurs PV qui peuvent être connectés en série à des modules PV à 2 branches. Veuillez sélectionner des modules PV ayant une excellente fonction et une qualité fiable. La tension en circuit ouvert du réseau de modules connecté doit être <Max.DC (indiqué dans le tableau ci-dessous) tension d'entrée, et la tension de fonctionnement doit se situer dans la plage de tension MPPT.

Tableau 3 Limitation maximum de la tension DC

Modèle	X1- Boost- 2.5K-G4	X1- Boost- 3K-G4	X1- Boost- 3.3K-G4	X1- Boost- 3.6K-G4	X1- Boost- 4.2K-G4	X1- Boost- 5K-G4	X1- Boost- 6K-G4	
Tension DC max.				600V				

DANGER !

Danger de mort dû à des tensions élevées sur les conducteurs de courant continu.

- Lorsqu'il est exposé à la lumière du soleil. le générateur photovoltaïque génère une tension continue dangereuse qui est présente dans les conducteurs DC. Le contact avec les conducteurs CC peut entraîner des chocs électriques mortels.

- Couvrez les modules PV.

- Ne pas toucher les conducteurs CC.

ATTENTION !

La tension du module PV est très élevée et appartient à une plage de tension dangereuse, veuillez respecter les règles de sécurité électrique lors de la connexion.

ATTENTION !

Ne pas mettre à la terre le positif ou le négatif du PV !

REMARQUE !

Veuillez respecter les exigences des modules photovoltaïques cidessous :

- Même type ; même quantité ; alignement identique ; inclinaison identique.

- Afin d'économiser du câble et de réduire la perte de courant continu, nous suggérons d'installer l'onduleur à proximité des modules photovoltaïques.

• Étapes de connexion

Les outils ci-dessous sont nécessaires avant la connexion.

sertissage

Outil de sertissage MC4 recommandé modèle : H4TC0001 fabricant : Amphenol

Pince à dénuder

Pince à sertir MC4 (4mm2 - 6mm2)

a) Mettez l'interrupteur CC en position off, puis choisissez un fil de 4 mm² pour connecter le module PV.

b) Dénudez 7 mm d'isolant à l'extrémité du fil à l'aide d'une pince à dénuder.

PV line: 4~6 mm² (2.5K~3.6K); $5 \sim 6 \text{ mm}^2$ (4.2K~6K)

c) Insérer le fil dénudé dans le contact de la broche et s'assurer que tous les brins du conducteur sont pris dans le contact de la broche.

d) Sertir le contact à l'aide de la pince à sertir MC4.

Pince à sertir MC4 (4mm2 - 6mm2)

(modèle recommandé : H4TC0001, fabricant : Amphenol)

 e) Séparer le connecteur DC en deux parties : la fiche et l'écrou du câble.
 Insérez le fil dans la fiche avec force ; si vous sentez ou entendez un "clic", l'ensemble des contacts de la broche est correctement placé.

f) Serrer ensuite l'écrou du câble.

g) Utilisez un multimètre pour mesurer la tension en circuit ouvert du pôle positif et du pôle négatif du câble PV, et assurez-vous que la tension en circuit ouvert est<600 V (sinon la machine risque d'être endommagée) ;

h) Retirez le couvercle de protection bleu de l'interface PV +&- au bas de l'onduleur, et insérez les bornes PV terminées en respectant la correspondance positive et négative.

I) Recouvrez les bornes PV restantes non utilisées avec le couvercle bleu d'origine.

REMARQUE : Maintenez l'interrupteur CC de l'onduleur en position off pendant la connexion.

Connexion au réseau

L'onduleur est conçu pour un réseau monophasé. La tension nominale du réseau est de 220/230/240 V et la fréquence de 50/60 Hz. Les autres exigences techniques doivent être conformes aux exigences du réseau public local.

Tableau 4 Câbles et microdisjoncteurs recommandés

	Modèle	X1- BOOST- 2.5K-G4	X1- BOOST -3K-G4	X1- BOOST- 3.3K-G4	X1- BOOST- 3.6K-G4	X1- BOOST- 4.2K-G4	X1- BOOST -5K-G4	X1- BOOST- 6K-G4
	L,N Cable	4-6 mm ²	4-6 mm ²	4-6 mm ²	4-6 mm ²	5-6 mm²	5-6 mm ²	5-6 mm²
	PE Cable	4-6 mm ²	4-6 mm ²	4-6 mm ²	4-6 mm ²	5-6 mm ²	5-6 mm ²	5-6 mm²
I	Vicro-disjoncteur	20 A	20 A	20 A	20 A	25 A	32 A	32 A

Les paramètres varient en fonction de l'environnement et des matériaux. Veuillez choisir le câble et le micro-disjoncteur appropriés en fonction des lois et réglementations locales.

REMARQUE !

Les onduleurs ne doivent pas être utilisés dans des combinaisons de phases multiples.

Un micro-disjoncteur doit être installé entre l'onduleur et le réseau. Aucune charge ne doit être connectée directement à l'onduleur.

Mauvaise connexion entre la charge et l'onduleur

• Étapes de connexion

a) Vérifier la tension du réseau et la comparer à la plage de tension admissible (voir les données techniques).

b) Déconnecter le disjoncteur de toutes les phases et l'empêcher de se reconnecter.

c) Dénuder les fils :

- Dénudez les fils L et N jusqu'à 52,5 mm et le fil PE jusqu'à 55 mm.

- Utilisez la pince à sertir pour dénuder 6 mm d'isolant à toutes les extrémités des fils, comme indiqué ci-dessous.

L/N/PE line: 4~6 mm² (2.5K~3.6K); 5~6 mm² (4.2K~6K) * The cross-sectional area of PE line should be the same as that of L/N line.

d) Le connecteur CA fourni dans la liste de colisage comprend 2 parties (A et B).

- Séparer A en 2 éléments.

- Ensuite, le connecteur CA est finalement classifié en 3 composants pour l'utilisation (comme indiqué ci-dessous).

Component 1 Component 2 Component 3

e) Glisser le composant 1 et le composant 2 sur le câble.

f) Insérer l'extrémité dénudée de chacun des trois fils dans le trou approprié du composant 3, puis serrer chaque vis (pour maintenir chaque fil en place). (Clé Allen. Couple : 0,5±0,1N-m)

g) Insérer le composant 3 dans le composant 2.

h) Visser fermement le composant 1. (Couple de serrage : 3±0,3N-m)

I) Branchez la prise CA sur l'onduleur.

Sélection des fusibles et des câbles de connexion

Le mini-câble (câble de ligne CA) doit être doté d'une protection contre les courts-circuits et d'une protection contre les surcharges thermiques. protection contre les surcharges thermiques.

Le câble d'entrée doit toujours être protégé par un fusible. Les fusibles gGs normaux (US : CC ou T) protègent le câble d'entrée en cas de court-circuit. Ils évitent également d'endommager l'équipement adjacent. Dimensionner les fusibles en fonction des réglementations de sécurité locales, de la tension d'entrée appropriée et du courant correspondant du variateur. La sortie CA protégée par un fusible externe (courant nominal gG 25 A/ 250 VAC pour 3,0 KW/ 3,3 KW ; 32 A/ 250 VAC pour 3,6 KW/ 4,2 KW/ 5,0 KW/ 6,0 KW) assure toutes les connexions sous tension à l'alimentation CA. Le pouvoir nominal de coupure en cas de court-circuit du dispositif de protection susmentionné doit être au moins égal au courant de défaut potentiel au point d'installation. Voir la section "données techniques" de ce manuel pour plus de détails.

Raccordement à la terre

Visser la vis de mise à la terre à l'aide d'un tournevis cruciforme comme indiqué ci-dessous.

ATTENTION ! Veillez à ce que le fil de terre soit connecté !

Etapes de connexion :

1) Utilisez une pince à sertir pour dénuder la borne du câble PE.

2) Glisser la gaine thermorétractable sur le câble PE. Ensuite, insérer le câble PE dans la borne, avec une longueur du côté gauche de la borne inférieure à 1,5 mm et une longueur du côté droit de la borne inférieure à 2 mm.

3) Utiliser une pince à sertir pour écraser la borne.

4) Utiliser une soufflerie d'air chaud pour souffler la gaine thermorétractable.

5) Visser la ligne PE à l'aide d'un tournevis cruciforme.

5.5.2 Interface de communication

Ce produit dispose d'une série d'interfaces de communication : DONGLE, COM/CT pour la communication et USB pour la mise à jour du micrologiciel. COM/CT sont utilisées pour la communication et USB est utilisé pour la mise à jour du micrologiciel. Les informations de fonctionnement telles que la tension de sortie, le courant, la fréquence, les informations sur les défauts, etc., peuvent être transmises à un PC ou à un autre équipement de surveillance par le biais de ces interfaces.

Port DONGLE

Cet onduleur est équipé d'un port DONGLE qui permet de collecter des informations à partir de l'onduleur, y compris l'état, les performances et la mise à jour des informations sur le site Web de surveillance via la connexion d'un dongle Wi-Fi (en option).

Étapes de connexion :

1. Plug the WiFi Dongle (optional) into "DONGLE" port at the bottom of inverter.

2. Connect the WiFi with router.

3. Scan below QR code or search for the keyword "MonotoringCloud" in

APP Store to download APP for setting up the monitoring.

4. Follow the steps to create a new account, set up internet connections

NOTE : Le module WIFI est optionnel. L'inclusion du module WIFI dans la liste de colisage dépend de la situation réelle.

COM/CT port

RS485 connection

RS485 is a standard communication interface which can transmit the realtime data from inverter to PC or other monitoring equipment

> Etapes de la connexion RS485 :

1) Dévissez d'abord toutes les vis du port COM/CT. (Tournevis cruciforme

PH1 . couple : 1,0±0,1N.m)

2) Préparez un câble de communication et dénudez-le.

3) Faites passer le câble de communication par le connecteur étanche, puis insérez-le dans le connecteur en suivant la règle de définition du PIN.

Serrer à la main. Couple : 1,2±0,1N.m

4) Sertir le connecteur à l'aide de la pince à sertir.

5) Insérer le câble dans le port COM/CT de l'onduleur, visser la vis sur le port et serrer le connecteur étanche.

b. Compteur/CT (en option)

 NOTE !
 Il est recommandé de connecter notre compteur intelligent à l'onduleur. Si aucun compteur intelligent n'est installé, veuillez désactiver la fonction "Contrôle des exportations" dans les paramètres de l'onduleur. Sinon, l'onduleur s'arrêtera et signalera une alerte "Défaut de compteur". Le "contrôle des exportations" est désactivé par défaut. En cas d'erreur, vérifiez s'il est désactivé.
 Le compteur intelligent doit être acheté auprès de nous et autorisé par nous. Tout compteur tiers ou non autorisé peut ne pas correspondre à l'onduleur. Nous ne serons pas responsables de toute perte ou dommage si le compteur n'est pas disponible ou incompatible dans ce cas.

Avec ce compteur monophasé fonctionnant avec la série X1, vous pouvez :

- (1) Contrôler l'énergie vers le réseau et à partir du réseau tout au long de la journée.
- (2) Réaliser la fonction de contrôle des exportations avec une plus grande précision.

a. Pour les compteurs sans TC

b. Pour les compteurs avec TC

La définition du PIN de l'interface du compteur est illustrée ci-dessous.

					—4 5			
PIN	1	2	3	4	5	6	7	8
Definition	х	х	х	485_A	485_B	х	х	х

➢ Connexion CT :

Le capteur de courant mesure le courant sur le fil de phase qui relie l'onduleur au réseau.

• Schéma de connexion du TC

• Definition du PIN du TC

Lors de la connexion du connecteur RJ45 avec le fil du TC, veuillez suivre la séquence ci-dessous :

• Étapes de connexion du TC :

NOTE!

- Ne pas placer le TC sur le fil N ou le fil de terre.
- Ne pas placer le TC sur les fils N et L simultanément.
- Ne pas placer le TC avec la flèche pointant vers le côté de l'onduleur.
- Ne pas placer le TC sur les fils non isolés.
- Ne pas utiliser de câble de plus de 25 m.

1. Insérez le connecteur RJ45 de CT dans le port COM/CT de l'onduleur et vissez fermement le bouchon.

2. Fixez la pince du TC sur la ligne L du côté du boîtier du compteur principal de la maison.

3. Assurez-vous que le capteur de courant est installé dans la bonne direction : La flèche sur le capteur de courant doit être orientée vers le réseau public.

≻ DRM

La fonction DRM (pour l'AS4777) permet de prendre en charge plusieurs modes de réponse à la demande en émettant les signaux de commande cidessous (pour les autres pays, la fonction DRM est utilisée pour l'arrêt à distance). L'utilisateur doit respecter la règle du code PIN suivante et coopérer avec l'équipement externe lorsqu'il l'utilise.

Le DRM partage le bornier avec les communications RS485/mètre. Pour les étapes de connexion du DRM, l'utilisateur peut se référer à la section ci-dessus (b) Connexions RS485.

Remarque : seul le DRM0 est disponible actuellement. La fermeture à distance est disponible pour les pays et les régions à l'exception de l'Australie.

Pompe à chaleur

PIN

Definition

Le boîtier d'adaptation permet de contrôler la fermeture et l'ouverture des interrupteurs en émettant des signaux de commande. Il peut également être utilisé pour contrôler la pompe à chaleur via le boîtier d'adaptation.

La définition de PIN de la pompe à chaleur est la suivante :

1 2 3 4 5	6	7	8

Heat Pump- X

Raccordement de la pompe à chaleur :

Х

Х

1) Connectez Heat Pump+ au pôle positif de la charge de la pompe à chaleur et connectez Heat Pump- au pôle négatif de la charge de la pompe à chaleur.

* La fonction de pompe à chaleur est désactivée par défaut. Veuillez l'activer dans les réglages.

Réglages de la pompe à chaleur :

1) Entrez dans l'interface des paramètres et sélectionnez DryContact.

>DryContact

X Heat Pump+ X

2) Il y a 2 modes de sélection après avoir accédé à l'interface DryContact : Gestion de la charge et Générateur.

(2.1) Choisissez Gestion de la charge, puis sélectionnez Manuel dans l'interface Calendrier.

(2.2) Choisissez On pour activer la fonction pompe à chaleur.

3) Réglez les intervalles de temps pour la mise en marche/off de la pompe à chaleur.

Connexion en parallèle

L'onduleur en série offre la fonction de connexion en parallèle, qui permet de mettre en parallèle plusieurs onduleurs dans un système et de contrôler l'injection de zéro dans le réseau à l'aide d'un compteur installé sur le circuit principal.

Le système parallèle peut être réalisé avec la fonction Modbus ou avec Datahub. Veuillez vous référer aux diagrammes suivants. Diagramme A : Système parallèle avec fonction Modbus

Diagramme B : Système parallèle avec Datahub

REMARQUE !

Avant l'utilisation, veuillez vous assurer que les onduleurs remplissent les conditions suivantes : 1. Tous les onduleurs doivent être de la même série ; 2. La version du micrologiciel de tous les onduleurs doit être la même. Dans le cas contraire, la fonction parallèle ne peut pas être utilisée.

> Système parallèle avec fonction Modbus

Dans ce système parallèle, 5 onduleurs au maximum peuvent être connectés. Un onduleur sera défini comme maître, et les autres seront les esclaves. L'onduleur maître peut communiquer avec tous les onduleurs esclaves.

• Opération de câblage

a) Connectez tous les onduleurs du système parallèle les uns aux autres via des câbles RS485.

b) Connectez le câble de communication à l'onduleur maître.

Réglage

Mettez l'ensemble du système sous tension, entrez dans la page de réglage des onduleurs sur l'écran LCD. Suivez les instructions ci-dessous pour finaliser les réglages.

Pour régler l'onduleur maître :

a) Entrez dans la page "ParallelSetting", choisissez "Enable" pour activer la fonction pour l'onduleur.

b) Assurez-vous que le compteur/CT est connecté à l'onduleur principal. Entrez dans la page "Export Control" et choisissez "Meter"/"CT" sur l'onduleur maître.

> > Contrôle des exportations Fonction DRM

c) Choisissez "M/S Mode" pour sélectionner l'onduleur maître. Un seul onduleur peut être défini comme "maître".

>M/S Mode	>M/S Mode
Limite du système	Maître

d) Réglez la valeur de "System Limit" sur l'onduleur maître. Il s'agit de la limite de puissance globale pour le système parallèle. La puissance de sortie des esclaves sera alors répartie respectivement en fonction de leur puissance de sortie nominale. La valeur peut être réglée entre 0 kW et 30 kW et la valeur par défaut est 0 W.

Pour régler les onduleurs esclaves :

a) Entrez dans la page "Export Control", et le statut du mode est "Disable" par défaut (les utilisateurs ne peuvent pas le régler eux-mêmes).

> Contrôle des exportations Fonction DRM > Sélection du mode Désactiver

b) Choisissez "ParallelSetting" et réglez le statut du "Pallel Switch" sur "Enable".

c) Entrez dans le "Mode M/S" et choisissez "Esclave" pour régler les onduleurs esclaves.

>M/S Mode Esclave

REMARQUE ! La valeur de limite de puissance définie dans "System Limit" est la limite pour les multiples onduleurs du système parallèle, tandis que la "UserValue" définie dans "Export Control" est la limite de puissance pour un seul onduleur qui sera nullifié lorsque la fonction parallèle est activée.

REMARQUE !

Le système parallèle avec la fonction Modbus et la fonction EV-Charger ne peuvent pas être utilisés en même temps. Si le chargeur EV est connecté lorsque plusieurs onduleurs fonctionnent dans le système parallèle :

Lorsque le "ParallelSetting" est activé, la communication de l'onduleur avec le chargeur EV sera interrompue. Dans ce cas, le EV-Charger doit avoir son propre TC/Mètre installé pour fonctionner correctement avec des onduleurs en parallèle.

Lorsque le "ParallelSetting" est désactivé, la fonction EV-Charger est activée, l'EV-Charger peut alors fonctionner normalement avec l'onduleur auquel il est connecté, tandis que les autres onduleurs ne peuvent pas réaliser la fonction de contrôle d'exportation.

Système parallèle avec Datahub

Dans ce système parallèle, 60 onduleurs au maximum peuvent être connectés. Les

Le Datahub sera le maître du système et tous les onduleurs seront les esclaves. Le Datahub peut communiquer avec tous les onduleurs esclaves.

≻Opération de câblage

a) Connectez une borne d'un câble de communication RS485 au

Datahub et l'autre extrémité à l'un des onduleurs esclaves.

- b) Relier tous les onduleurs esclaves entre eux par des câbles RS485.
- c) Connectez le compteur au Datahub et au réseau électrique.

REMARQUE !

L'onduleur connecté au Datahub ne doit pas activer le "ParallelSetting". le "ParallelSetting".

Il n'est pas nécessaire de régler le "ParallelSetting" sur les onduleurs, le système parallèle avec le Datahub démarrera automatiquement. Le système parallèle avec le Datahub démarre automatiquement.

Pour plus de détails, veuillez vous référer au manuel d'utilisation de Datahub.

Fonction EV-Charger

L'onduleur peut communiquer avec le chargeur EV intelligent pour former un système intelligent d'énergie photovoltaïque, de stockage et de charge des VE, maximisant ainsi l'utilisation de l'énergie photovoltaïque.

Diagramme : Système intelligent d'énergie photovoltaïque, de stockage et de recharge des VE

· Opération de câblage

a) Branchez une borne du câble de communication sur la broche droite du chargeur EV et l'autre borne sur les broches 4 et 5 du port "COM/CT" de l'onduleur.

b) Connectez le compteur aux broches 4 et 5 du port "COM/CT" de l'onduleur.

· Réglages

Mettez l'ensemble du système sous tension, accédez à la page "Settings" des onduleurs sur l'écran LCD.

a) Entrez dans la page "Export Control" et choisissez "CT" ou "Meter".

> Contrôle des exportations DRM Function > Sélection du mode Compteur

> Sélection du mode CT

L

b) Sélectionnez "EvChargerEnable" puis entrez dans "Mode Select". Assurez-vous que l'interface affiche "Enable" sous "Mode Select", ce qui indique que la fonction EV-Charger a démarré avec succès.

> EvChargerEnable Détection de la terre > Sélection du mode Activer

Pour l'installation et les réglages du chargeur EV, veuillez vous référer au manuel d'utilisation du chargeur EV pour plus de détails.

REMARQUE !

La fonction EV-Charger et le système parallèle avec Datahub ou le système parallèle avec la fonction Modbus ne peuvent pas être utilisés en même temps.

④ Mise à niveau

L'utilisateur peut mettre à jour le système de l'onduleur par l'intermédiaire du disque U.

WARNING!

Make sure the input voltage is more than 65 VDC (in good illumination condition), or it may result in failing during updating.

Étapes de la mise à niveau :

1) Contactez notre service pour obtenir le dernier firmware. Ajoutez ensuite un nouveau dossier nommé "Update" dans le répertoire racine de votre U-disk, et deux autres sous-dossiers nommés "ARM" et "DSP" sous "Update". Copiez les fichiers firmware dans ARM et DSP respectivement. Il s'agira de :

"Update\ARM\323101021300_X1_BOOST_G4_XX_XXXX_XXX_XX X_ARM_Vxxx.xx_xxxxxxxxxxx.xxx.bin" ;

"Update\DSP\323101021400_X1_BOOST_G4_XX_XXXX_XXX_XX X_DSP_Vxxx.xx_xxxxxxxxxx.bin"

ATTENTION!

- Veillez à ce que le répertoire soit strictement conforme au formulaire ci-dessus !

- Ne modifiez pas le nom du file du programme ! Sinon, l'onduleur risque de ne plus fonctionner ! 3) Insérez ensuite le disque U dans le port DONGLE situé sous l'onduleur. Ensuite, allumez l'interrupteur CC ou connectez le connecteur PV, l'interface LCD s'affichera comme ci-dessous.

4) Appuyez en haut et en bas pour sélectionner celui que vous voulez mettre à jour et appuyez longuement en bas pour confirmer.

5) Lorsque la mise à jour est terminée, n'oubliez pas d'éteindre l'interrupteur CA et l'interrupteur CC (en option), puis de retirer l'U-disk.

ATTENTION

Pendant la mise à jour, ne pas désactiver l'interrupteur CC ni débrancher le connecteur PV. En cas d'échec, répétez l'opération ci-dessus.

5.6 Faire fonctionner l'onduleur

•Démarrer l'onduleur après avoir vérifié toutes les étapes ci-dessous :

- b) Assurez-vous que tous les disjoncteurs CC et les disjoncteurs CA sont déconnectés.
- c) Le câble CA est correctement connecté au réseau.
- d) Le câble CC est correctement et sûrement connecté ;
- e) Le câble de mise à la terre est correctement et sûrement connecté ;
- f) Le câble de communication est correctement et sûrement connecté.
- g) Tous les panneaux PV sont correctement connectés à l'onduleur, les connecteurs CC qui ne sont pas utilisés doivent être scellés par un couvercle.
- h) Aucun objet étranger, tel qu'un outil, n'est laissé sur le dessus de la machine ou dans la boîte de jonction (le cas échéant).

I) Mettez l'interrupteur CC (en option) en position "ON". j) Mettez d'abord les connecteurs externes CA puis CC sous tension.

- Démarrer l'onduleur

- L'onduleur démarre automatiquement lorsque les panneaux photovoltaïques produisent suffisamment d'énergie.

- Vérifiez l'état des indicateurs LED et de l'écran LCD. Les indicateurs LED doivent être bleus et l'écran LCD doit afficher l'interface principale.

- Si l'indication LED n'est pas bleue, veuillez vérifier les conditions ci-dessous : - Starting the inverter

- The inverter starts automatically when the photovoltaic panels are producing enough energy.

- Check the status of the LED indicators and the LCD screen. The LED indicators should be blue and the LCD screen should display the main interface.

- If the LED indication is not blue, please check the conditions below:

Les trois états suivants s'affichent lors du fonctionnement, ce qui signifie que le démarrage de l'onduleur s'est déroulé correctement.

Statuts	Description
Attendre	L'onduleur attend de vérifier la tension.
Vérification	L'onduleur vérifie automatiquement l'environnement d'entrée CC lorsque la tension d'entrée CC des panneaux PV dépasse 50 V et que les panneaux PV ont suffisamment d'énergie pour démarrer l'onduleur.
Normal	L'onduleur commence à fonctionner normalement lorsque la lumière bleue est allumée en permanence. Pendant ce temps, l'énergie est renvoyée au réseau et l'écran LCD affiche la puissance de sortie actuelle.

Entrez dans l'interface de configuration pour suivre les instructions lors de la première mise en route.

ATTENTION !

L'appareil ne doit être mis sous tension qu'une fois les travaux d'installation terminés. Tous les raccordements électriques doivent être effectués par du personnel qualifié, conformément à la législation en vigueur dans le pays concerné.

REMARQUE !

Réglez l'onduleur en fonction des exigences locales.

5.7 Alarme de défaut d'isolement

L'onduleur est doté d'une fonction d'alarme de défaut d'isolement, conformément à la norme AS 4777_2020 et à la loi néo-zélandaise. Il émet une alarme visuelle, le voyant rouge clignote et le message IsoFault s'affiche sur l'écran LCD de l'onduleur dès que l'impédance d'isolation des panneaux photovoltaïques est inférieure à 20 K Ω .

- Veuillez sélectionner la région australienne A, B, C pour les modes de réponse à la qualité de l'énergie et les paramètres de protection du réseau lors de la mise en service.

- Vous pouvez ajuster les points de consigne pour les modes de réponse à la qualité de l'énergie et les paramètres de protection du réseau si nécessaire.

5.8 Mise en service

- Version du micrologiciel

- Paramètres régionaux (et points de consigne) pour les paramètres de protection du réseau

- Paramètres régionaux (et points de consigne) pour les modes de réponse à la qualité de l'énergie.

a) Vérifiez que l'appareil est bien fixé au mur.

[-23

REMARQUE !

Le mot de passe ne doit pas être facilement accessible - si vous en avez besoin, vous pouvez trouver le mot de passe dans un manuel d'entretien séparé ou auprès du fabricant/ importateur sur demande.

6. Méthode de fonctionnement

6.1 Panneau de contrôle

Real-time output power Status or error information 0W Power \bigcirc \mathbb{Z} [!] \bigtriangledown Normal Operating Error Up/ESC Down/Enter indicator indicator LCD screen button button light light

Item	Description
Écran LCD	Affiche les informations relatives à l'onduleur.
Témoin lumineux de fonctionnement	Lumière bleue : L'onduleur est en état normal. Clignotement en bleu : L'onduleur est en état d'attente.
Indicateur d'erreur	Voyant rouge : L'onduleur est en défaut.
Up/ESC button	Touche Up/ESC : Une pression courte permet de déplacer le curseur vers le haut ou d'augmenter la valeur ; une pression longue permet de revenir à l'interface ou à la fonction en cours.
Bouton Bas/Entrée	Bouton Bas/Entrée : Appui court pour déplacer le curseur vers le bas ou diminuer la valeur. Appuyez longuement pour confirmer et modifier les paramètres.

Remarque : Lorsque l'onduleur est en état d'"attente" et de "vérification", le voyant bleu "B" est clignotant ; lorsqu'il est en état "normal", le voyant bleu "B" est toujours allumé.

6.2 Structure de l'écran LCD

Veuillez vous référer à l'onduleur pour connaître la structure la plus récente.

Note:

Clés	Operation	Description
	Presse longue	Passer au menu suivant ou confirmer la modification des paramètres
Entrée/Descente	Presse courte	Passer au paramètre suivant ou augmenter la valeur
Deskille	Presse longue	Retourner au menu précédent ou confirmer les paramètres
васк/Ор	Presse courte	Parcourir le paramètre précédent ou diminuer la valeur

6.3 Fonctionnement de l'écran LCD

**Go to next page

**Go to next page

**Go to next page

Operation Method

Power 0W	Pgrid 0W	Today 0.0kWh	Total 0.0kWh
Normal	Normal	Normal	Normal

1) La première ligne affiche les paramètres (Power, Pgrid, Today et total) et les valeurs.

Paramètres	Signification	
Puissance	Puissance de sortie de l'onduleur	
Pgrid	La puissance exportée vers le réseau ou importée du réseau ; (Une valeur positive signifie que l'énergie est injectée dans le réseau, une valeur négative signifie que l'énergie est utilisée à	partir du réseau
Today	La puissance générée au cours de la journée	
Total	La puissance générée au total	

2) La deuxième ligne indique l'état de fonctionnement/ "Normal" signifie l'état de fonctionnement de l'onduleur.

Niveau 2

Écran LCD Niveau 1

Appuyez longuement sur le bouton "Enter" pour accéder à l'interface de deuxième niveau.

L'utilisateur peut voir les paramètres, tels que l'état, la langue, la date et l'heure, les paramètres (mot de passe nécessaire), le compteur d'énergie (y compris l'importation totale, l'exportation totale), les journaux d'erreurs (de l'onduleur) et À propos (l'utilisateur peut consulter les informations de l'onduleur, y compris le numéro de série du produit, le type de machine, le numéro de registre, le maître, l'esclave, le gérant et le code interne).

a) Statut

La fonction d'état comprend deux aspects : le réseau et l'énergie solaire. Appuyez sur "Up" et "Down" pour sélectionner et appuyez longuement sur "down" pour confirmer la sélection, appuyez longuement sur "Up" pour revenir au Menu.

>FregOverpoint >DroopRate >Enable >P(Over freq) >Enable/Disable >DelayTime >StopTime >fPmin >fhyste >FreqOverpoint >DroopRatio >P(Under freq) >Enable/Disable >Enable DelayTime >fhyste >fPmax >Enable >QuLockIn >QuLockOut >QuGridV1/2/3/4

>Disable

>Q(u)PowerLockEn

CurveType

>QuRatio1/2/3/4

>Q (u)

Operation Method

1) Réseau

Cet état indique la condition actuelle du port de sortie CA de l'onduleur, comme la tension, le courant, la puissance de sortie et la puissance du réseau.

Cet état comprend 5 paramètres : U, I, F, Pout, Pgrid. Appuyez sur les boutons "Haut" et "Bas" pour parcourir le paramètre, puis appuyez longuement sur "Haut" pour revenir à l'état.

	Grid
>U	0.0V
1	0.0A

2) Solaire

Cet état montre la condition PV en temps réel du système, comme la tension d'entrée, le courant et la situation de puissance de chaque entrée PV.

Cet état comprend 6 paramètres : U1, I1, P1, U2, I2, P2.

Appuyez sur les boutons "haut" et "bas" pour parcourir les paramètres, puis appuyez longuement sur "haut" pour revenir à l'état.

	Solar	
>U1		0.0V
11		0.0A

b) Langue

Cette fonction permet de sélectionner une langue parmi l'anglais, l'allemand, le polonais, le français, le portugais, etc.

	Language	
>Eng Gei	ılish rman	

c) Date et heure

Cette interface permet à l'utilisateur de régler la date et l'heure du système. Augmentez ou diminuez le mot en appuyant sur le bouton "Haut" ou "Bas". Appuyez longuement sur "Down" pour confirmer et passer au paramètre suivant. Une fois tous les chiffres confirmés, appuyez longuement sur la touche "Bas" pour confirmer et passer au paramètre suivant. Appuyez longuement sur la touche "Bas" pour entrer la date et l'heure.

Date&Time
>2000-01-01
00:00

d) Réglages

Cette fonction permet de régler l'onduleur.

		Set	tings	
↓ 0	0	0	0	

* Mot de passe

Le mot de passe par défaut est "2014" pour l'installateur, ce qui permet uniquement à l'installateur d'examiner et de modifier les paramètres nécessaires conformément aux règles et réglementations locales. Si d'autres réglages avancés sont nécessaires, veuillez contacter le distributeur ou nous contacter pour obtenir de l'aide. Il faut augmenter ou diminuer le mot en appuyant sur le bouton haut ou bas. Appuyez longuement sur le bouton "Bas" pour confirmer et passer au numéro suivant.

Après avoir saisi le mot de passe, l'interface LCD s'affiche comme suit :

1) Sécurité

L'utilisateur peut définir ici les normes de sécurité en fonction des différents pays et des normes de raccordement au réseau. Il existe plusieurs normes au choix (susceptibles d'être modifiées sans préavis). En outre, l'utilisateur dispose d'une option "UserDefined" qui lui permet de personnaliser les paramètres pertinents dans une fourchette plus large.

Safety				
>Country				
VDE4105				

REMARQUE !

La norme de la grille doit être définie pour différentes régions en fonction des exigences locales. En cas de doute, veuillez consulter nos techniciens pour plus de détails.

Les paramètres par défaut pour les différentes régions sont indiqués ci-dessous :

Region	Australia A	Australia B	Australia C	New Zealand	
Standarad Code Name	AS4777_2020_A	AS4777_2020_B	AS4777_2020_C	New Zealand	Setting Range
OV-G-V	265V	265V	265V	265V	230-300V
OV-GV1-T	1.5S	1.5S	1.5S	1.5S	
OV-G-V2	275V	275V	275V	275V	230-300V
OV-GV2-T	0.1S	0.1S	0.1S	0.1S	
UN-G-V1	180V	180V	180V	180V	40-230V
UNGV1Ŧ	10S	10S	10S	10S	
UN-G-V2	70V	70V	70V	70V	40-230V
UNGV2T	1.5S	1.5S	1.5S	1.5S	
OV-G-F1	52Hz	52Hz	55Hz	55Hz	50-55Hz
OVGF4T	0.1S	0.1S	0.1S	0.1S	
OV-G-F2	52Hz	52Hz	55Hz	55Hz	50-55Hz
OVGF2T	0.1S	0.1S	0.1S	0.1S	
UN-G-F1	47Hz	47Hz	45Hz	45Hz	45-50Hz
UNGF1F	1.5S	1.5S	5S	1.5S	
UN-G-F2	47Hz	47Hz	45Hz	45Hz	45-50Hz
UNGF2T	1.5S	1.5S	5S	1.5S	
Startup-T	60S	60S	60S	60S	15-1000S
Restore-T	60S	60S	60S	60S	15-600S
Recover-VH	253V	253V	253V	253V	
Recover-VL	205V	205V	205V	198V	
Recover-FH	50.15Hz	50.15Hz	50.15Hz	50.15Hz	
Recover-FL	47.5Hz	47.5Hz	47.5Hz	47.5Hz	
Start-VH	253V	253V	253V	253V	
Start-VL	205V	205V	205V	198V	
Start-FH	50.15Hz	50.15Hz	50.15Hz	50.15Hz	
Start-FL	47.5Hz	47.5Hz	47.5Hz	47.5Hz	

Contrôle des exportations

Cette fonction permet à l'onduleur de contrôler l'énergie exportée vers le réseau. La présence de cette fonction dépend des souhaits de l'utilisateur.

Choisir "Désactiver" signifie que la fonction sera désactivée.

La valeur utilisateur définie par l'installateur doit être comprise entre 0 kW et 60 kW. Appuyez sur les boutons "Haut" et "Bas" pour sélectionner et appuyez longuement sur "Bas" pour confirmer.

> -- Export Control ---->Mode Select CT/Meter/Disable

Fonction DRM

L'installateur peut choisir "Activer" pour contrôler la mise hors tension de l'onduleur par le biais d'une communication externe.

4) Services du réseau

En général, l'utilisateur final n'a pas besoin de définir les paramètres de la grille. Toutes les valeurs par défaut ont été réglées avant de quitter l'usine conformément aux règles de sécurité.

Si une réinitialisation est nécessaire, les modifications doivent être effectuées conformément aux exigences du réseau local.

4-1. ---- Reactive Power --If reset is needed, any changes >Mode Select should be made according to the >Off< requirements of local grid. Mode Select Comment Off _ Over-Excited PF value Under-Excited PF value PowerFactor1(2/3/4) PowerRatio1(2/3/4) PF(P) EntryVolt ExitVolt Q(u)PowerLockEn Q(u) LockIn Q(u) Q(u) LockOut Q(u) GridV1/V2/V3/V4 Fix Q Power Q Power

NOTE! The terms shown in the interface depend on the local safety regulations.

4-2.

Reactive power control, Reactive standard curve $\cos \varphi = f(P)$ For VDE ARN 4105, curve $\cos \varphi = f(P)$ should refer to curve A. Default values of setting are as shown in curve A.

For E 8001, curve $\cos \varphi = f(P)$ should refer to curve B. Default values of setting are as shown in curve B.

Reactive power control, Reactive standard curve Q = f(V)

Voltage 1(Vv1): 180-230V

(Default: AS4777_2020_A(207V);AS4777_2020_B(205V);AS4777_2020_C(215V);New Zealand(207V)) Voltage 2(Vv2): 180-230V

(Default: AS4777_2020_A(220V);AS4777_2020_E(220V);AS4777_2020_C(230V);New Zealand(220V)) Q-Limit 2(Vv2): 0%

Voltage 3(Vv3): 230V-265V

(Default: AS4777_2020_A(240V); AS4777_2020_B(235V); AS4777_2020_C(240V); New Zealand(235V)) Q-Limit 3(Vv3): 0% Voltage 4(Vv4): 230V-265V

(Default: AS4777_2020_A(258V);AS4777_2020_B(255V);AS4777_2020_C(255V);New Zealand(244V)) "VV1" Leading(Supplying): +30~+60%

(Default: AS4777_2020_A(+44%);AS4777_2020_B(+30%);AS4777_2020_C(+44%);New Zealand(+60%)) Lagging(Absorbing): -30~-60%

(Default: AS4777_2020_A(-60%);AS4777_2020_B(-40%);AS4777_2020_C(-60%);New Zealand(-60%))

Status:Enable/Disable (Note:This is used to enable or disable the Volt-Watt mode) Voltage 1(Vw1): 235V-255V (Default: AS4777_2020_ A(253V); AS4777_2020_B (250V); AS4777_2020_ C(253V); New Zealand(242V)) P-Limit 1(Vw1): 100% Voltage 2(Vw2): 240V-265V

(Default: AS4777_2020_A (260V); AS4777_2020_B (260V); AS4777_2020_ C(260V); New Zealand(250V)) P-Limit 2(Vw2): 0-20%(Default: 20% for AS4777_2020_ A; AS4777_2020_B ; AS4777_2020_ C; New Zealand)

5) Protection du réseau

En général, l'utilisateur final n'a pas besoin de régler la protection du réseau. Toutes les valeurs par défaut ont été réglées avant de quitter l'usine conformément aux règles de sécurité.

Si une réinitialisation est nécessaire, les modifications doivent être effectuées en fonction des exigences du réseau local.

6) Nouveau mot de passe

L'utilisateur peut définir ici le nouveau mot de passe. Il faut augmenter ou diminuer le mot en appuyant sur le bouton "Up" ou "Down". Appuyez longuement sur le bouton "Bas" pour confirmer et passer au mot suivant. Une fois le mot confirmé, appuyez longuement sur "Bas" pour réinitialiser le mot de passe.

7) RS485 CommAddr

Si "Enable" est sélectionné, le variateur communiquera avec l'ordinateur, ce qui permettra de contrôler l'état de fonctionnement du variateur. Lorsque plusieurs onduleurs sont surveillés par un ordinateur, les adresses de communication RS485 des différents onduleurs doivent être définies. La fonction RS485 ne sera effective que si l'adresse est identique. L'adresse par défaut est "1".

9) Mode de balayage Mppt

Il existe 4 modes de sélection : "off", "LowFeqScan", "MidFreqScan", "HighFreqScan". Il indique la fréquence de balayage du panneau PV.

Si "LowFreqScan" est sélectionné, l'onduleur scannera le panneau PV à basse fréquence. Temps pour LowFreqScan : 4h ; pour MidFeqScan : 3h ; pour HighFreqScan : 1h.

10) Réinitialisation de l'énergie

Cette fonction permet à l'utilisateur d'effacer l'énergie du TC et du compteur (si l'utilisateur utilise un TC ou un compteur).

	Reset Energy
>Re	set
	>YES/NO<

11) Remise à zéro du compteur

Cette fonction permet à l'utilisateur d'effacer l'énergie du compteur. Appuyez sur le bouton "Haut" ou "Bas" pour sélectionner et appuyez longuement sur le bouton "Bas" pour confirmer. (L'utilisateur peut sélectionner "Oui" pour réinitialiser le compteur s'il utilise le compteur).

Reset Meter	
> Reset	
>YES/NO<	

12) Réinitialiser Errolog

Cette fonction permet à l'utilisateur d'effacer les errologs. Appuyez sur le bouton "Haut" ou "Bas" pour sélectionner et appuyez longuement sur le bouton "Bas" pour confirmer.

Re	set Errorlog
> Reset	
>Y[ES/NO<

13) Réinitialiser le WiFi

Cette fonction permet à l'utilisateur de redémarrer le WiFi.

---- ParallelSetting ----

> Parallel Switch Enable 14) Type de machine

Cette fonction permet à l'utilisateur de vérifier le type de machine.

----- Machine Type-----Machine Type X1-BOOST-6K-G4

15) Connexion en PVC

Cette fonction permet à l'utilisateur de sélectionner le type de connexion PV.

>Mode Select >Multi/Comm<

16) EvChargerEnable

L'utilisateur peut activer la fonction EvCharger en sélectionnant "Enable".

- - - - -EvChargerEnable - - - -Mode Select

> Enable/Disable <

17) Détection de la terre

Cette fonction permet à l'utilisateur d'activer ou de désactiver la détection de la terre. La détection de la terre est désactivée par défaut.

> ----- Earth Detect -----Mode Select > Enable/Disable<

18) Contact sec

L'utilisateur peut utiliser le contact sec pour connecter la pompe à chaleur par cette fonction (nécessite SG Ready).

Trois fonctions (Désactivé/Manuel/Economie intelligente) peuvent être sélectionnées pour la gestion de la charge. "Désactiver" signifie que la pompe à chaleur est éteinte. Lorsque "Manuel" est sélectionné, l'utilisateur peut contrôler le relais externe pour qu'il reste fermé ou ouvert manuellement.

Le mode "Smart Save" permet de définir les valeurs de l'heure et des conditions d'activation et de désactivation de la pompe à chaleur, ainsi que les modes de fonctionnement.

Si l'utilisateur utilise les contacts secs de l'onduleur pour contrôler la pompe à chaleur via le boîtier d'adaptation, veuillez vous référer au Guide d'installation rapide du boîtier d'adaptation pour régler les paramètres ici.

e) Compteur d'énergie

Cette fonction permet à l'utilisateur de vérifier l'importation et l'exportation d'énergie. Il y a 2 paramètres : "Importation totale" et "Exportation totale". Appuyez sur les boutons "UP" ou "DOWN" pour consulter les valeurs.

Meter Energy		
	Today Import:	
	0.0kWh	

f) Journaux d'erreurs

Le journal des erreurs contient des informations sur les erreurs survenues. Il peut contenir 5 éléments au maximum. Appuyez sur les boutons "Haut" et "Bas" pour passer en revue les paramètres. Appuyez longuement sur "Up" pour revenir à l'interface principale.

Error Logs
XX-XX-XX XX:XX
> No error <

g) A propos

Cette interface affiche des informations sur l'onduleur, notamment "Product SN", "Master", "Manager" et "Internal code"

Product SN:

Niveau 3

Appuyez longuement sur le bouton "Enter" pour accéder à l'interface de troisième niveau.

a) Statut : L'utilisateur peut voir les paramètres U/I/P du réseau et du PV, tels que Ugrud, lgrid, P et F du réseau, et Usolar, Isolar et Psolar du PV.

b) Langue : Cet onduleur propose plusieurs langues au choix de l'utilisateur.
c) Paramètres : En entrant le mot de passe de l'installateur, les informations de l'interface LCD sont affichées à la page précédente.

Sécurité : L'utilisateur peut définir ici la norme de sécurité appropriée.
 Réseau : En général, l'utilisateur final n'a pas besoin de régler les paramètres de la grille.

En cas de réinitialisation, toute modification doit être conforme aux exigences du réseau local.

Parameter	Commentaire
Para	
O/V Stage1	Point de surtension lent
U/V Stage1	Point de sous-tension lent
O/V Stage2	Point de surtension rapide
U/V Stage2	Point de sous-tension rapide
O/V Stage3	Point de surtension rapide de l'étape 3
U/V Stage3	Stade 3 - point de sous-tension rapide
O/V 10min En	Surtension moyenne de 10 min activée
O/V 10min Set	Valeur de réglage de la surtension moyenne 10 min
O/F Stage1	Point de surfréquence lente
U/F Stage1	Point de sous-fréquence lente
O/F Stage2	Point de surfréquence rapide
U/F Stage1	Point de sous-fréquence rapide
FreqROCOF	Taux de variation de la fréquence
T_Start	Durée de l'autotest
H/LVRT Function	Fonctionnement haute/basse tension activé
Frt_EnterVoltDn	Valeur d'entrée du passage en basse tension
Frt_EnterVoltUp	Valeur d'entrée du passage haute tension
Qu_3Tau	Constante de temps de réponse de l'échelon réactif
Pu_3Tau	Constante de temps de réponse de l'échelon actif
VacOVP1stTime	Temps de protection contre les surtensions de l'étage 1
VacOVP2ndTime	Temps de protection contre les surtensions de l'étage 2
VacOVP3rdTime	Temps de protection contre les surtensions à l'étape 3
VacUVP1stTime	Temps de protection à minimum de tension de l'étage 1
VacUVP2ndTime	Temps de protection à minimum de tension de l'étage 2
VacUVP3rdTime	Phase-3 Temps de protection contre les sous-tensions
FacOFP1stTime	Temps de protection contre les sur-fréquences de l'étage 1
FacOFP2ndTime	Temps de protection contre les sur-fréquences de la phase 2
FacUFP1stTime	Temps de protection contre les sous-fréquences de la phase 1
FacUFP2ndTime	Phase-2 temps de protection contre les sous-fréquences

REMARQUE !

Les règles de sécurité spécifiques dépendent des règles de sécurité locales.

3) Facteur de puissance : (pour un pays spécifique si le réseau local l'exige).
Il existe 6 modes de sélection : Arrêt, sous-excité, surexcité, PF (p), Q (u).
Tous les paramètres sont indiqués ci-dessous.

Mode	Commentaire
Off	
Sous tension	Valeur PFF
Trop de tension	Valeur PFF
PF(p)	Facteur de puissance 1
	Facteur de puissance2
	Facteur de puissance3
	Facteur de puissance4
	Rapport de puissance1
	Rapport de puissance2
	Rapport de puissance3
	Rapport de puissance4
Q(u)	QuLockIn
	QuLockOut
	QuGridV1
	QuGridV2
	QuGridV3
	QuGridV4
Fixed Q Power	Q Power

Pour la norme VDE 4105, la courbe cos $\varphi = f(P)$ doit correspondre à la courbe A. Les valeurs de réglage par défaut sont indiquées sur la courbe A. Pour TOR, la courbe cos $\varphi = f(p)$ doit se référer à la courbe B, les valeurs de réglage par défaut sont celles indiquées sur la courbe B.

7 Dépannage

7.1 Dépannage

Cette section contient des informations et des procédures pour résoudre les problèmes éventuels de notre onduleur et vous donne des conseils de dépannage pour identifier et résoudre la plupart des problèmes pouvant survenir avec l'onduleur.

Cette section vous aidera à identifier la source des problèmes que vous pouvez rencontrer. Veuillez lire les étapes de dépannage suivantes. Vérifiez les avertissements ou les messages d'erreur sur le panneau de contrôle du système ou les codes d'erreur sur le panneau d'information de l'onduleur. Si un message s'affiche, notez-le avant de poursuivre. Essavez la solution indiquée dans les listes de dépannage.

* Si le panneau d'information de votre onduleur n'affiche pas de voyant d'erreur, vérifiez la liste suivante pour vous assurer que l'état actuel de l'installation permet un fonctionnement correct de l'unité.

- L'onduleur est-il placé dans un endroit propre, sec et correctement ventilé ?

- Les disjoncteurs d'entrée CC ont-ils été ouverts ?

- Les câbles sont-ils correctement dimensionnés et suffisamment courts ?

- Les connexions d'entrée et de sortie et le câblage sont-ils en bon état ?

- Les configurations sont-elles adaptées à l'installation ? - Le panneau d'affichage et le câble de communication sont-ils correctement connectés Le panneau d'affichage et le câble de communication sont-ils correctement connectés et en bon état ?

Contactez notre service clientèle pour obtenir de l'aide. Préparez-vous à décrire les détails de votre installation et à fournir le modèle et le numéro de série de l'appareil.

Code	Défauts	Diagnostic et solution
IE:00001	TzFault	Défaut de surintensité. - Attendez environ 10 secondes pour vérifier si l'onduleur est revenu à la normale. - Déconnectez l'interrupteur CC et redémarrez l'onduleur. - Ou consultez-nous pour trouver une solution.
IE:00002	GridLostFault	Défaut de perte du réseau. - Vérifiez si le câble d'alimentation est desserré. - Attendez un peu et le système se reconnectera lorsque l'alimentation sera redevenue normale. - Ou consultez-nous pour trouver des solutions.
IE:00003 IE:00004 IE:00005	GridVoltFault	Tension du réseau hors plage. - Vérifiez si le câble d'alimentation est desserré. - Attendez un peu et le système se reconnectera lorsque l'alimentation sera redevenue normale. - Ou consultez-nous pour trouver des solutions.
IE:00006 IE:00007 IE:00008	GridFreqFault	Fréquence du réseau hors plage. - Attendez un peu et le système se reconnectera lorsque le service public sera revenu à la normale. - Ou consultez-nous pour trouver des solutions.
IE:00009	PVVoltFault	Défaut de tension PV. - Vérifier si le PV est en surtension. - Ou consultez-nous pour trouver des solutions.
IE:00010 IE:00051 IE:00052	BusVoltFault	Tension du bus CC en dehors de la plage normale. - Vérifier que la tension d'entrée PV est comprise dans la plage de fonctionnement de l'onduleur. - Déconnecter le càblage PV et le reconnecter. - Ou consultez-nous pour trouver des solutions.
IE:00012	GridVolt10MFault	Défaut de surtension du réseau pendant dix minutes. - Le système se reconnectera lorsque le service public reviendra à la normale. - Ou consultez-nous pour trouver des solutions.
IE:00013	DcInjOCP	Défaut de protection contre les surintensités de l'ICD. - Attendez un peu pour vérifier si l'onduleur est revenu à la normale. - Ou consultez-nous pour trouver des solutions.
IE:00034	HardLimitFault	Défaut de limite dure (dans la norme australienne). - Attendez un peu pour vérifier si l'onduleur est revenu à la normale. - Ou consultez-nous pour trouver des solutions.
IE:00018 IE:00019	ResidualOCP	Défaut de protection contre les surintensités. - Vérifiez les connexions de l'onduleur. - Attendez un peu pour vérifier si l'onduleur est revenu à la normale. - Ou consultez-nous pour trouver des solutions.
IE:00020	IsoFault	Défaut d'isolement. - Vérifiez les connexions de l'onduleur. - Ou consultez-nous pour trouver des solutions.
IE:00021	OverTempFault	Défaut de surchauffe. - Vérifiez si l'onduleur et la température ambiante dépassent la plage de fonctionnement. - Ou consultez-nous pour trouver des solutions.
IE:00055	EarthFault	Faute de terre. - Vérifier si la terre est correctement connectée - Ou consultez-nous pour trouver des solutions.

Code	Défauts	Diagnostic et solution
IE:00029	LowTempFault	Défaut de basse température. - Vérifiez si la température ambiante est trop basse. - Ou consultez-nous pour trouver des solutions.
IE:00036	InternalComFault	Défaut de communication interne. - Redémarrez l'onduleur pour vérifier s'il est revenu à la normale. - Mettez à jour le logiciel ARM ou réenregistrez le programme. - Ou consultez-nous pour obtenir des solutions.
IE:00037	EepromFault	Défaut de l'EEPROM du DSP. - Déconnecter le câblage PV et le reconnecter. - Ou consultez-nous pour trouver des solutions.
IE:00038	RcDeviceFault	Défaut du dispositif à courant résiduel. - Redémarrer l'onduleur. - Mettre à jour le logiciel ARM ou réenregistrer le programme. - Ou consultez-nous pour obtenir des solutions.
IE:00041 IE:00042 IE:00043 IE:00044	PVConnDirFault	Défaut de direction PV. - Vérifiez que les côtés PV+/- sont correctement connectés. - Ou consultez-nous pour des solutions.
IE:00039 IE:00056	GridRelayFault	Défaut de relais. - Vérifiez la connexion au réseau. - Redémarrez l'onduleur. - Ou consultez-nous pour trouver des solutions.
ME:00103	Mgr EEPROM Fault	Défaut de l'EEPROM ARM. - Déconnectez le système photovoltaïque du réseau, puis reconnectez-le. - Ou consultez-nous pour des solutions.
ME:00105	Meter Fault	Défaut de compteur. - Vérifier le branchement du compteur. - Vérifiez si le compteur est en état de marche. - Ou consultez-nous pour trouver des solutions.
ME:00101	PowerTypeFault	Défaut de type de puissance. - Vérifiez la version de l'ARM et du DSP. - Vérifiez le numéro SN du produit. - Ou consultez-nous pour des solutions.
ME00104	Mgr Comm Fault	Mgr InterCom Fault - Éteignez le système photovoltaïque, la batterie et le réseau, puis reconnectez-les. - Ou demandez de l'aide à l'installateur s'il ne peut pas revenir à la normale.
IE:00016	SW OCP Fault	Défaut de protection contre les surintensités du logiciel. - Attendez un peu pour vérifier si l'onduleur est revenu à la normale. - Déconnectez le système photovoltaïque et le réseau, puis reconnectez-les. - Ou consultez-nous pour trouver une solution.

7.2 Maintenance de routine

Dans la plupart des cas, les onduleurs n'ont pas besoin d'être entretenus ou corrigés, mais si l'onduleur perd souvent de la puissance en raison d'une surchauffe, cela peut s'expliquer par les raisons suivantes :

· Les fins de refroidissement à l'arrière de l'onduleur sont recouvertes de saletés.

- Nettoyez les fins de refroidissement avec un chiffon doux et sec ou une brosse si nécessaire.

- Seul un personnel professionnel formé et autorisé, familiarisé avec les exigences de sécurité, est autorisé à effectuer des travaux d'entretien et de maintenance.

- Avant de procéder au nettoyage, attendez quelques minutes pour vous assurer que la machine a refroidi et qu'elle est bien arrêtée, afin d'éviter tout risque de choc électrique.

Contrôles de sécurité

Les contrôles de sécurité doivent être effectués au moins tous les 12 mois par une personne qualifiée par le fabricant qui possède une formation, des connaissances et une expérience pratique suffisantes pour effectuer ces tests. Les données doivent être consignées dans un registre de l'équipement. Si l'appareil ne fonctionne pas correctement ou échoue à l'un des tests, il doit être réparé. Pour plus de détails sur les contrôles de sécurité, reportez-vous à la section 2 Instructions de sécurité et directives CE de ce manuel.

Entretien périodique

Au cours de l'utilisation du convertisseur, la personne responsable doit examiner et entretenir régulièrement la machine.

et entretenir régulièrement la machine. Les opérations spécifiques sont les suivantes.

1) Vérifiez que les fins de refroidissement à l'arrière du variateur ne sont pas recouvertes de saletés, et la machine doit être nettoyée si nécessaire. Ce travail doit être vérifié de temps en temps.

2) Vérifiez que les indicateurs du variateur sont dans un état normal, vérifiez que l'affichage du variateur est normal. Ce contrôle doit être effectué au moins tous les 6 mois.

 Vérifier que les fils d'entrée et de sortie ne sont pas endommagés ou vieillis. Ce contrôle doit être effectué au moins tous les 6 mois.

4) Vérifiez que la borne de mise à la terre et le câble de mise à la terre sont solidement connectés et que toutes les bornes et tous les ports sont correctement scellés tous les 12 mois.

5) Les panneaux de l'onduleur doivent être nettoyés et leur sécurité vérifiée au moins tous les 6 mois.

8 Mise hors service

8.1 Démontage de l'onduleur

- Mettez hors tension les interrupteurs CA et CC du système d'onduleur.
- Attendez 5 minutes pour la mise hors tension.
- Déconnectez la sortie CA, puis l'entrée CC, les câbles de communication
- et les autres câbles.
- Retirez l'onduleur de son support
- Retirer le support si nécessaire

ATTENTION!

- Avant de démonter l'onduleur, veillez à déconnecter

l'interrupteur CC, puis à débrancher les câbles PV et CA, sous peine de provoquer un choc électrique.

- Ne touchez aucune pièce interne sous tension pendant au moins 10 minutes après avoir déconnecté l'onduleur du réseau électrique et de l'entrée PV.

8.2 Emballage

Dans la mesure du possible, veuillez emballer l'onduleur avec l'emballage d'origine.

S'il n'est plus disponible, vous pouvez également utiliser un carton équivalent qui répond aux

aux exigences suivantes.

- Convient pour des charges supérieures à 30 kg.
- Avec poignée.
- Peut être complètement fermé.

8.3 Stockage et transport

Stockez l'onduleur dans un endroit sec où la température ambiante est toujours comprise entre -30 °C et +70 °C. Prenez soin de l'onduleur pendant le stockage et le transport.

8.4 Mise au rebut de l'onduleur

Si la durée de vie de l'onduleur arrive à son terme, mettez-le au rebut conformément aux règles locales d'élimination des déchets d'équipements électriques.

Lorsque l'onduleur ou d'autres composants connexes doivent être mis au rebut. Faites-les éliminer conformément aux réglementations locales en matière de traitement des déchets. Veillez à livrer les onduleurs usagés et les matériaux d'emballage à un site donné, qui pourra aider le service compétent à les éliminer et à les recycler.

9 Clause de non-responsabilité

Cette garantie limitée s'applique aux produits vendus après le 1er janvier 2022, par l'intermédiaire de notre société ou de revendeurs agréés. Les pièces défectueuses ou les unités remplacées dans le cadre d'une demande de garantie deviennent notre propriété et doivent nous être renvoyées ou à nos partenaires agréés (distributeurs) pour inspection avec l'emballage d'origine ou un emballage équivalent.

(distributeurs) pour inspection avec l'emballage d'origine ou équivalent. Le produit n'est pas couvert par la garantie dans les cas suivants :

A. Le produit n'est plus sous garantie ;

B. La défaillance du produit ne nous est pas signalée dans le mois qui suit son apparition ;

C. Le produit n'est pas conforme à notre manuel d'installation ou aux instructions d'entretien de l'onduleur ou de l'accessoire ;

D. Non-respect des règles de sécurité et des réglementations relatives à l'onduleur ou à l'accessoire ;

E. L'onduleur ou l'accessoire a été endommagé pendant le transport, mais le demandeur a signé le récépissé de livraison (qui demande au demandeur de vérifier l'extérieur et l'intérieur du colis et de prendre des photos comme preuve avant de signer le récépissé de livraison) ;

F. Les produits remplacés n'ont pas été renvoyés à nous ou à nos partenaires (distributeurs) dans un délai de 30 jours ;

G. Le défaut est causé par une mauvaise utilisation du produit ou par le non-respect de l'utilisation du produit à des fins autres que celles pour lesquelles le produit a été conçu ou prévu ;

H. Le produit est déplacé pour quelque raison que ce soit après avoir été installé (qu'il ait été réinstallé ultérieurement ou déplacé au même endroit), à moins qu'il ne soit réinstallé à la même adresse par un installateur qualifié qui a fourni un rapport d'essai à notre société.

I. Le dommage ou le défaut est causé par la foudre, les inondations, le feu, les surtensions, la corrosion, les dégâts causés par les parasites, les actions d'un tiers ou tout autre facteur de force majeure ;

J. Le dommage ou le défaut est causé par un logiciel intégré ou externe, ou

le matériel (par exemple, les dispositifs de contrôle des onduleurs ou les dispositifs de contrôle de la charge ou de la décharge des batteries) de tiers sans l'autorisation (accord écrit) de notre société ;

K. Le produit est modifié ou altéré (y compris lorsque le numéro de série ou l'étiquette du produit est altéré, enlevé ou défiguré) ;

L. Défauts (par exemple, toute rayure ou tache extérieure, ou usure de la nature du matériau qui ne constitue pas un défaut) qui n'affectent pas le bon fonctionnement de l'onduleur ou de l'accessoire.
 M. L'usure normale :

N. Les frais de déplacement et de séjour ainsi que les frais d'installation sur site, de modification et d'entretien normal ;

O. Les droits de douane, les taxes ou frais d'importation ou d'exportation et autres frais administratifs généraux ;

L'onduleur de remplacement ou l'accessoire ayant fait l'objet d'une amélioration technique peut ne pas être entièrement compatible avec les autres composants du système photovoltaïque. Les frais encourus en conséquence ne seront pas couverts par la garantie ou l'extension de garantie.

En outre, tous les autres coûts, y compris, mais sans s'y limiter, l'indemnisation des dommages directs ou indirects résultant de l'appareil défectueux ou d'autres installations du système photovoltaïque, ou la perte d'énergie générée pendant l'immobilisation du produit, ne sont pas couverts par la présente garantie. Dans tous les autres cas, qu'il s'agisse d'un contrat, d'un délit ou autre, l'indemnisation maximale pour les pertes subies par le client en raison de ses fautes ne doit pas dépasser le montant payé par le client pour l'achat de l'équipement.

Garantie Enregistrement Formulaire

Pour le client (obligatoire)

Nom et prénom	Pays
Numéro de téléphone	Email
Adresse	
État	Code Zip
Numéro de série du produit	
Date de mise en service	
Nom de la société d'installation	
Nom de l'installateur	N° de licence d'électricien

Pour l'installateur

Module (le cas échéant)

Marque du module	
Taille du module <u>_(L)</u>	
Nombre de cordes	Nombre de panneaux par ligne

Batterie (le cas échéant)

Type de batterie	
Marque	
Nombre de batteries attachées	
Date de livraison	Signature

Please visit our warranty website: <u>https://www.solaxcloud.com/#/warranty</u> to complete the online warranty registration or use your mobile phone to scan the QR code to register.

For more detailed warranty terms, please visit SolaX official website: <u>www.solaxpower.com</u> to check it.

ENREGISTREZ LA GARANTIE IMMÉDIATEMENT APRÈS L'INSTALLATION ! OBTENEZ VOTRE **CERTIFICAT DE GARANTIE AUPRÈS DE** SOLAX ! **GARDEZ VOTRE ONDULEUR EN LIGNE ET GAGNEZ DES POINTS SOLAX !**

